Alternating Series

The integral test and the comparison test given in previous lectures, apply only to series with positive terms.

- A series of the form $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ or $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$, where $b_{n}>0$ for all n, is called an alternating series, because the terms alternate between positive and negative values.
- Example

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}=-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\ldots \\
& \sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{2 n+1}=\frac{1}{3}-\frac{2}{5}+\frac{3}{7}-\frac{4}{9}+\ldots
\end{aligned}
$$

- We can use the divergence test to show that the second series above diverges, since

$$
\lim _{n \rightarrow \infty}(-1)^{n+1} \frac{n}{2 n+1} \text { does not exist }
$$

Alternating Series test

We have the following test for such alternating series:
Alternating Series test If the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\ldots \quad b_{n}>0
$$

satisfies

$$
\begin{aligned}
& \text { (i) } b_{n+1} \leq b_{n} \quad \text { for all } n \\
& \text { (ii) } \lim _{n \rightarrow \infty} b_{n}=0
\end{aligned}
$$

then the series converges.

- we see from the graph that because the values of b_{n} are decreasing, the partial sums of the series cluster about some point in the interval $\left[0, b_{1}\right]$.

- A proof is given at the end of the notes.

Notes

Alternating Series test If the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\ldots \quad, b_{n}>0
$$

satisfies

$$
\begin{aligned}
& \text { (i) } b_{n+1} \leq b_{n} \quad \text { for all } n \\
& \text { (ii) } \lim _{n \rightarrow \infty} b_{n}=0
\end{aligned}
$$

then the series converges.

- A similar theorem applies to the series $\sum_{i=1}^{\infty}(-1)^{n} b_{n}$.
- Also we really only need $b_{n+1} \leq b_{n}$ for all $n>N$ for some N, since a finite number of terms do not change whether a series converges or not.
- Recall that if we have a differentiable function $f(x)$, with $f(n)=b_{n}$, then we can use its derivative to check if terms are decreasing.

Example 1

Alternating Series test If the alternating series
$\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\ldots \quad b_{n}>0$ satisfies
(i) $b_{n+1} \leq b_{n}$ for all n

$$
\text { (ii) } \lim _{n \rightarrow \infty} b_{n}=0
$$

then the series converges.
Example 1 Test the following series for convergence

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}
$$

- We have $b_{n}=\frac{1}{n}$.
- $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
- $b_{n+1}=\frac{1}{n+1}<b_{n}=\frac{1}{n}$ for all $n \geq 1$.
- Therefore, we can conclude that the alternating series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}$ converges.
- Note that an alternating series may converge whilst the sum of the absolute values diverges. In particular the alternating harmonic series above converges.

Example 2

Alternating Series test If the alternating series
$\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\ldots \quad b_{n}>0$ satisfies
(i) $b_{n+1} \leq b_{n}$ for all n
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$
then the series converges.
Example 2 Test the following series for convergence $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+1}$

- We have $b_{n}=\frac{n}{n^{2}+1}$.
- $\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{1 / n}{1+1 / n^{2}}=0$.
- To check if the terms b_{n} decrease as n increases, we use a derivative. Let $f(x)=\frac{x}{x^{2}+1}$. We have $f(n)=b_{n}$.
- $f^{\prime}(x)=\frac{\left(x^{2}+1\right)-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}<0$ for $x>1$.
- Since this function is decreasing as x increases, for $x>1$, we must have $b_{n+1}<b_{n}$ for $n \geq 1$.
- Therefore, we can conclude that the alternating series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+1}$ converges.

Example 3

Alternating Series test If the alternating series
$\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\ldots \quad b_{n}>0$ satisfies
(i) $b_{n+1} \leq b_{n}$ for all n
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$
then the series converges.
Example 3 Test the following series for convergence: $\sum_{n=1}^{\infty}(-1)^{n} \frac{2 n^{2}}{n^{2}+1}$

- We have $b_{n}=\frac{2 n^{2}}{n^{2}+1}$.
- Here we can use the divergence test (you should always check if this applies first)
- We have $\lim _{n \rightarrow \infty} \frac{2 n^{2}}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{2}{1+1 / n^{2}}=2 \neq 0$.
- Therefore $\lim _{n \rightarrow \infty}(-1)^{n} \frac{2 n^{2}}{n^{2}+1}$ does not exist and we can conclude that the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{2 n^{2}}{n^{2}+1}
$$

diverges.

Example 4

Alternating Series test If the alternating series
$\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\ldots \quad b_{n}>0$ satisfies
(i) $b_{n+1} \leq b_{n}$ for all n
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$
then the series converges.
Example 4 Test the following series for convergence: $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n!}$

- We have $b_{n}=\frac{1}{n!}$.
- Since $0 \leq b_{n}=\frac{1}{n \cdot(n-1) \cdot(n-2) \cdots \cdots 1} \leq \frac{1}{n}$, we must have $\lim _{n \rightarrow \infty} \frac{1}{n!}=0$.
$-b_{n+1}=\frac{1}{(n+1) \cdot n \cdot(n-1) \cdot(n-2) \cdots \cdots 1}=\frac{1}{(n+1)} \cdot \frac{1}{n \cdot(n-1) \cdot(n-2) \cdots \cdots 1}=\frac{1}{n+1} \cdot b_{n}<b_{n}$ if $n>1$.
- Therefore by the Alternating series test, we can conclude that the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n!}$ converges.

Example 5

Example 5 Test the following series for convergence: $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{n^{2}}$

- We have $b_{n}=\frac{\ln n}{n^{2}}$.
- $\lim _{n \rightarrow \infty} \frac{\ln n}{n^{2}}=\lim _{x \rightarrow \infty} \frac{\ln x}{x^{2}}=\left(L^{\prime} H o p\right) \lim _{x \rightarrow \infty} \frac{1 / x}{2 x}=\lim _{x \rightarrow \infty} \frac{1}{2 x^{2}}=0$.
- To check if b_{n} is decreasing as n increases, we calculate the derivative of $f(x)=\frac{\ln x}{x^{2}}$.
- $f^{\prime}(x)=\frac{\left(x^{2}\right)(1 / x)-2 x \ln x}{x^{2}}=\frac{x-2 x \ln x}{x^{2}}=\frac{x(1-2 \ln x)}{x^{2}}<0$ if $1-2 \ln x<0$ or $\ln x>1 / 2$. This happens if $x>\sqrt{e}$, which certainly happens if $x \geq 2$.
- This is enough to show that $b_{n+1}<b_{n}$ if $n \geq 2$ and hence $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{n^{2}}$ converges.

Example 6

Example 6 Test the following series for convergence: $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(\frac{\pi}{n}\right)$

- We have $b_{n}=\cos \left(\frac{\pi}{n}\right) . b_{n}>0$ for $n \geq 2$.
- $\lim _{n \rightarrow \infty} \cos \left(\frac{\pi}{n}\right)=\lim _{x \rightarrow \infty} \cos \left(\frac{\pi}{x}\right)=1 \neq 0$.
- Therefore $\lim _{n \rightarrow \infty}(-1)^{n} \cos \left(\frac{\pi}{n}\right)$ does not exist and the series $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(\frac{\pi}{n}\right)$ diverges by the divergence test.

Error of Estimation

Estimating the Error

Suppose $\sum_{i=1}^{\infty}(-1)^{n-1} b_{n}, b_{n}>0$, converges to s. Recall that we can use the partial sum $s_{n}=b_{1}-b_{2}+\cdots+(-1)^{n-1} b_{n}$ to estimate the sum of the series, s. If the series satisfies the conditions for the Alternating series test, we have the following simple estimate of the size of the error in our approximation $\left|R_{n}\right|=\left|s-s_{n}\right|$.
(R_{n} here stands for the remainder when we subtract the nth partial sum from the sum of the series.)
Alternating Series Estimation Theorem If $s=\sum(-1)^{n-1} b_{n}, \quad b_{n}>0$ is the sum of an alternating series that satisfies

$$
\begin{aligned}
& \text { (i) } b_{n+1}<b_{n} \quad \text { for all } n \\
& \text { (ii) } \lim _{n \rightarrow \infty} b_{n}=0
\end{aligned}
$$

then

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}
$$

A proof is included at the end of the notes.

Example

Alternating Series Estimation Theorem If $s=\sum(-1)^{n-1} b_{n}, \quad b_{n}>0$ is the sum of an alternating series that satisfies

$$
\begin{aligned}
& \text { (i) } b_{n+1}<b_{n} \quad \text { for all } n \\
& \\
& \text { (ii) } \lim _{n \rightarrow \infty} b_{n}=0
\end{aligned}
$$

then

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}
$$

Example Find a partial sum approximation the sum of the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}$ where the error of approximation is less than $.01=10^{-2}$.

- We have $b_{n}=\frac{1}{n}$. $b_{n}>0$ for $n \geq 1$ and we have already seen that the conditions of the alternating series test are satisfied in a previous example.
- Therefore the n th remainder, $\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}=\frac{1}{n+1}$.
- Therefore, if we find a value of n for which $\frac{1}{n+1} \leq \frac{1}{10^{2}}$, we will have the error of approximation $R_{n} \leq \frac{1}{10^{2}}$.
- $\frac{1}{n+1} \leq \frac{1}{10^{2}}$ if $10^{2} \leq n+1$ or $n \geq 101$.
- Checking with Mathematica, we get the actual error $R_{101}=\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}-\sum_{n=1}^{101}(-1)^{n} \frac{1}{n}=0.00492599$ which is indeed less than 01 .

